Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Responsive teaching, a pedagogical approach that foregrounds and builds instruction on student ideas, requires teachers to attend to and build on student resources. However, teachers’ interpretations of student resources, especially during live teaching, remain understudied. In this study, we examined in-the-moment interpretations, teachers’ real-time sense-making of and reflection on students’ epistemic and emotional resources, and explored how teachers’ in-themoment interpretations can support their responsive teaching talk moves and knowledge. Employing a convergent mixed-methods research design, we designed and implemented a generative artificial intelligence (AI)-supported virtual simulation as a pedagogical sandbox for 40 preservice teachers (PSTs) to practice teaching with virtual students, interpret student resources, and act on these interpretations in real time. Linear regression analysis was conducted and found that PSTs’ in-the-moment interpretations are significant predictors of their responsive teaching talk moves and knowledge. Qualitative thematic analysis identified themes that corroborated and extended the findings of the quantitative component. Implications for teacher education and simulation design are discussed.more » « lessFree, publicly-accessible full text available December 1, 2026
-
This case study reports on the perceptions and dialogic behaviors of 15 preservice K-12 teachers engaging in simulation-based teaching practice with AI-powered student agents. Data included transcripts of text-based classroom dialogue, interviews, observations, and conversation logs. Using mixed-methods analyses and a framework of ambitious science teaching, we identified two key findings that are important to Human-AI interaction researchers and teacher trainers. First, AI-powered student agents exhibit naturalistic discourse behavior, with ambitious talk moves leading to more rigorous student contributions and conservative talk moves leading to low rigor contributions. And second, preservice teachers’ dialogue was responsive to the AI-powered students’ contributions.more » « less
-
The Dragonfly networks have been adopted in the current supercomputers, and will be deployed in future generation supercomputers and data centers. Effective routing on Dragonfly is challenging. Universal Globally Adaptive Load-balanced routing (UGAL) is the state-of-the-art routing algorithm for Dragonfly. For each packet, UGAL selects either a minimal path or a non-minimal path based on their estimated latencies. Practical UGAL makes routing decisions with local information, deriving the estimated latency for each path from the local queue occupancy and path hop count information. In this work, we develop techniques to improve the accuracy of the latency estimation for UGAL with local information, which results in more effective routing decisions. In particular, our schemes are able to proactively mitigate the potential network congestion with imbalanced network traffic. Extensive simulation experiments using synthetic traffic patterns and application workloads demonstrate that our enhanced UGAL schemes significantly improve the routing performance for many common traffic conditions.more » « less
-
Abstract MotivationMany tasks in sequence analysis ask to identify biologically related sequences in a large set. The edit distance, being a sensible model for both evolution and sequencing error, is widely used in these tasks as a measure. The resulting computational problem—to recognize all pairs of sequences within a small edit distance—turns out to be exceedingly difficult, since the edit distance is known to be notoriously expensive to compute and that all-versus-all comparison is simply not acceptable with millions or billions of sequences. Among many attempts, we recently proposed the locality-sensitive bucketing (LSB) functions to meet this challenge. Formally, a (d1,d2)-LSB function sends sequences into multiple buckets with the guarantee that pairs of sequences of edit distance at most d1 can be found within a same bucket while those of edit distance at least d2 do not share any. LSB functions generalize the locality-sensitive hashing (LSH) functions and admit favorable properties, with a notable highlight being that optimal LSB functions for certain (d1,d2) exist. LSB functions hold the potential of solving above problems optimally, but the existence of LSB functions for more general (d1,d2) remains unclear, let alone constructing them for practical use. ResultsIn this work, we aim to utilize machine learning techniques to train LSB functions. With the development of a novel loss function and insights in the neural network structures that can potentially extend beyond this specific task, we obtained LSB functions that exhibit nearly perfect accuracy for certain (d1,d2), matching our theoretical results, and high accuracy for many others. Comparing to the state-of-the-art LSH method Order Min Hash, the trained LSB functions achieve a 2- to 5-fold improvement on the sensitivity of recognizing similar sequences. An experiment on analyzing erroneous cell barcode data is also included to demonstrate the application of the trained LSB functions. Availability and implementationThe code for the training process and the structure of trained models are freely available at https://github.com/Shao-Group/lsb-learn.more » « less
-
Atomic doping to enhance the p-type behavior of BiFeO 3 photoelectrodes for solar H 2 O 2 productionNa-doped BiFeO3demonstrates an enhanced p-type behavior compared to p-type BiFeO3prepared without extrinsic dopants, and Na-doped BiFeO3can serve as a photocathode for solar O2reduction to H2O2when coupled with Ag nanoparticle catalysts.more » « less
-
Pattern analysis of ambitious science talk between preservice teachers and AI-powered student agentsNew frontiers in simulation-based teacher training have been unveiled with the advancement of artificial intelligence (AI). Integrating AI into virtual student agents increases the accessibility and affordability of teacher training simulations, but little is known about how preservice teachers interact with AI-powered student agents. This study analyzed the discourse behavior of 15 preservice teachers who undertook simulation-based training with AI-powered student agents. Using a framework of ambitious science teaching, we conducted a pattern analysis of teacher and student talk moves, looking for evidence of academically productive discourse. Comparisons are made with patterns found in real classrooms with professionally trained science teachers. Results indicated that preservice teachers generated academically productive discourse with AI-powered students by using ambitious talk moves. The pattern analysis also revealed coachable moments where preservice teachers succumbed to cycles of unproductive discourse. This study highlights the utility of analyzing classroom discourse to understand human-AI communication in simulation-based teacher training.more » « lessFree, publicly-accessible full text available March 3, 2026
An official website of the United States government

Full Text Available